
RESEARCH ARTICLE
www.advphysicsres.com

Short Versus Long Range Exchange Interactions in Twisted
Bilayer Graphene

Alejandro Jimeno-Pozo,* Zachary A. H. Goodwin, Pierre A. Pantaleón, Valerio Vitale,
Lennart Klebl, Dante M. Kennes, Arash A. Mostofi, Johannes Lischner,
and Francisco Guinea

This study discusses the effect of long-range interactions within the
self-consistent Hartree-Fock (HF) approximation in comparison to
short-range atomic Hubbard interactions on the band structure of twisted
bilayer graphene (TBG) at charge neutrality for various twist angles. Starting
from atomistic calculations, it determines the quasi-particle band structure of
TBG with Hubbard interactions for three magnetic orderings: modulated
anti-ferromagnetic (MAFM), (NAFM) and hexagonal anti-ferromagnetic
(HAFM). Then, it develops an approach to incorporate these magnetic
orderings along with the HF potential in the continuum approximation. Away
from the magic angle, it observes a drastic effect of the magnetic order on the
band structure of TBG compared to the influence of the HF potential. Near
the magic angle, the HF potential plays a major role in the band structure,
with HAFM and MAFM being secondary effects, but NAFM appears to still
significantly distort the electronic structure at the magic angle. These findings
suggest that the spin-valley degenerate broken symmetry state often found in
HF calculations of charge neutral TBG near the magic angle should favor
magnetic order, since the atomistic Hubbard interaction will break this
symmetry in favor of spin polarization.
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1. Introduction

Magic-angle TBG has generated tremen-
dous interest in twistronics[1–3] since
the discovery of correlated insulating
states and superconductivity in the
≈1.1° moiré supperlattice.[4,5] The initial
reports[4–6] indicated the presence of
strong electron-electron correlations in
TBG that give rise to unconventional
superconductivity.[5] While this is not
unanimously agreed upon,[7–11] TBG has
also been found to host strange metal
behavior,[12,13] nematic order,[14–17] Dirac
revivals,[18,19] Pomeranchuk effect,[20,21]

and Chern insulators,[22–26] amongst
other effects and phases.[27–33]

To understand these phases, given
that magic-angle TBG contains ≈12,000
atoms in its moiré unit cell,[34–37] it is
typical for the low-energy continuum
model,[38,39] based on that of Bistritzer
and MacDonald,[40] to be utilized. This
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theory couples states of the Dirac cones of each layer and valley at
different moiré crystal momenta, which causes the onset of flat
bands at ≈1.1°.[8] The continuum model of TBG can naturally
be extended to include long-ranged Hartree-Fock interactions,[41]

since it is based on an expansion in the moiré crystal momenta
(which have very small magnitudes, corresponding to large
length scales). This interacting theory has provided some un-
derstanding into the phase diagram of TBG,[7,42] in terms of the
superconducting phase,[41,43–45] correlated insulating states,[46–50]

Dirac revivals,[18] pinning of van Hove singularities,[41,51] for ex-
ample.

Including short-ranged interactions in this continuum model
has proven more difficult, however. The Wannier orbital Hamil-
tonians of the flat bands,[52–60] which provides a reduced
Hamiltonian matrix that can be solved with strong-correlation
methods,[54,61–64] can include short-ranged interactions if com-
puted (from an atomistic model), but there are also long-ranged
interactions because of the extended nature of the Wannier or-
bitals, and therefore, the effect of short versus long ranged in-
teractions cannot be decoupled. It is more natural to include
short-ranged interactions in atomistic models, such as density
functional theory (DFT)[34,35] or tight-binding (TB),[36,37] since the
atomic-scale information is retained in such approaches. For ex-
ample, Klebl and Honerkamp[65] included an atomic on-site Hub-
bard interaction to study the magnetic phase diagram of TBG
using random phase approximation (RPA) spin-susceptibility
calculations.[66,67] Moreover, these atomistic approaches can also
include long-ranged interactions, such as self-consistent Hartree
interactions.[68–73]

A significant limiting factor of self-consistent atomistic ap-
proaches for broken symmetry phases is their computational
cost.[71,74,75] Some examples of such calculations exist in the
literature,[71–73,76] but modeling of the full phase diagram - as
function of twist angle and doping level, amongst other ex-
perimental variables - has not yet been achieved. For exam-
ple, González and Stauber[72,73] used a Green’s functions based
method to study the effect of long-ranged interactions and the
interplay between long and short-ranged interactions, but only at
1.16° and either at charge neutrality or −2 electrons per moiré
unit cell. Moreover, Vahedi et al.[71] investigated several twist an-
gles (1.08°, 1.30°, and 1.47°), but only at charge neutrality. Often,
the difficulty to access large system sizes has been mitigated by
re-scaling the TB parameters[71,77–79] or by applying hydrostatic
pressure,[80–82] such that flat bands can be studied using unit cells
containing only a few hundred to a few thousand atoms.

Here, we develop an approach that includes short-ranged inter-
actions, such as the on-site Hubbard interaction of the pz orbitals,
in the continuum model. Starting from the RPA spin suscepti-
bility calculations of Klebl and Honerkamp,[65] we perform self-
consistent atomistic Hubbard calculations to obtain the mean-
field magnetic order parameters for different ordering tenden-
cies (at a large twist angle and charge neutrality). We develop an-
alytical expressions for the real-space spin densities associated
with the magnetic orderings. These analytical forms are then
used to determine the corresponding scalar sublattice potentials
to be used in continuum model calculations. In order to elu-
cidate the twist angle dependence of the interplay between the
magnetic orderings and the Hartree-Fock potential, we perform
self-consistent Hartree-Fock calculations at charge neutrality, to

which we add the effective magnetic potential at different twist
angles. Overall, it is found that the long-range contribution dom-
inates at the magic-angle, but away from the magic angle, the
effect of magnetic ordering is more significant. We discuss the
competition between these long and short-range exchange inter-
actions in detail, and finish with a discussion of future directions.

2. Results

2.1. Short- Range Atomistic Hubbard Interactions

From the RPA (q = 0) spin-susceptibility calculations,[65,66] three
different leading magnetic orderings are identified: modulated
antiferrogmagnetic order (MAFM), nodal antiferromagnetic or-
der (NAFM) and hexagonal antiferromagnetic order (HAFM). To
find which instability is the lowest energy state at a given twist
angle and doping level, mean-field atomistic Hubbard calcula-
tions have been performed. As these atomistic calculations are
extremely computationally expensive at the magic angle, we fo-
cus on 1.54° at charge neutrality, which is also motivation for q =
0 magnetic instabilities, even though they might not be the true
ground state. At this twist angle and doping level, RPA predicts
the leading instability in TBG to be MAFM (with a critical Hub-
bard interaction of Uc ≈ 5.1 eV), with NAFM and HAFM having
slightly larger critical interaction strengths (of Uc ≈ 5.4 eV). For
these instabilities, we perform unconstrained and constrained
atomistic Hubbard calculations, as outlined in Section Atom-
istic Calculations.

Figure 1b,c) show the spatial behavior of the MAFM instability
obtained from mean-field Hubbard calculations with U = 5.4 eV.
The magnetic order parameter is characterized by a sub-lattice os-
cillation of the magnetic order parameter 𝜁 = (n↑ − n↓)/(n↑ + n↓),
which is modulated throughout the moiré supercell.[65] Figure 1b
displays the magnetic structure along the diagonal of the moiré
unit cell of the top graphene layer, with sublattice A and B plotted
separately in black and gray, respectively. Figure 1c additionally
illustrates the real-space structure of the magnetic order param-
eter on sublattice B of the top layer over the moiré supercell. The
moiré-scale variation of the MAFM order is not large enough to
change the sign of the sublattice polarization. The magnetic or-
der parameter exhibits a peak in the AA region, as might be ex-
pected from the LDOS of TBG.[36] At the peaks, we find that the
magnetic order parameter has a value of |𝜁 | ≈ 0.1 suggesting that
not just the flat-band electrons are spin polarized (otherwise, one
could expect a value of |𝜁 | ≈ 10−4). This is in agreement with other
works.[71–73]

The MAFM order can be approximated with the following an-
alytical form

𝜁M(r) ≈ 𝜁 ′s +
𝜁s

6

6∑
i=1

cos(Gi ⋅ r) (1)

where Gi are reciprocal lattice vectors, 𝜁 ′s is the average sublat-
tice polarization and 𝜁 s describes how this sublattice polarization
changes on the moiré scale. For sublattice Al (Bl), where l = 1, 2
is the layer index, the sign of the polarization is − (+). Note that
the above equation assumes the AA region is located at the origin
of the moiré unit cell.
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Figure 1. a,d,g) Self-consistent quasi-particle band structures for the studied magnetic orders of TBG at 1.54° and charge neutrality along the high
symmetry path. For MAFM, U = 5.4 eV and unconstrained calculations were performed; whereas, for NAFM and HAFM, U = 5.94 eV and constrained
calculations were performed. b,e,h) Corresponding self-consistent magnetic order parameter plotted along the diagonal of the moiré supperlattice,
where R1 and R2 are the moiré lattice vectors. Sublattice A is shown in black and sublattice B is shown in grey for the top graphene layer (bottom layer
not shown). c,f,i) Corresponding plots in real space for a single layer and sublattice, where only sublattice B of the top layer is shown. Note, the U’s were
chosen to be slightly above the critical values. For MAFM, if U = 5.94 eV is used, the gap at the Dirac point is extremely large.[83]

In Figure 1a, we show the corresponding self-consistent quasi-
particle band structure. The different valleys, K and K′, have
been identified by applying the valley operator to the states (see
Refs. [78, 79, 84] for details of this calculation), and shown in solid
black and dotted grey, respectively. Since the MAFM order breaks
C2 symmetry, it causes a gap to open at the Dirac cones at the K/K′

points of the moiré Brillouin zone of TBG.
Finally, we point out that the MAFM order could not be sta-

bilized at U = 5.1 eV, but it was found to be stable for all larger
values of U. For U larger than 5.4 eV, the constant contribution
dominates, i.e., 𝜁 ′

s ≫ 𝜁 s, with the gap at the K/K′ points becoming
very large (100’s of meV).[83]

Similarly, the order parameter in the NAFM order also exhibits
a peak in the AA regions. In contrast to MAFM, the average of the
sublattice spin polarization over the moiré unit vanishes, as seen
in the self-consistent values shown in Figure 1e. The correspond-
ing real-space structure is shown in Figure 1f, where nodes in the
magnetic order around the AA region separate the regions of op-

posite signs of spin polarization. This magnetic order is referred
to as nodal anti-ferromagnetic order because 𝜁 goes through zero
between the AA and AB/BA regions, causing the sign of 𝜁 to
change on each sub-lattice between these types of stacking.[65] It
can be described by

𝜁N(r) ≈
𝜁s

6

6∑
i=1

cos(Gi ⋅ r) (2)

This instability was not the leading instability,[65] and we found
the unconstrained calculations could never stabilise this order,
as it would always eventually revert to MAFM order. Therefore,
we performed constrained mean-field Hubbard calculations, as
explained in Section Atomistic Calculations. The resulting quasi-
particle band structure for U = 5.94 eV is shown in Figure 1d,
and again it is an antiferromagnetic, Mott-like insulator with a
large gap. Using the constraint method, the NAFM order could
be stabilized for U values larger than 5.67 eV.
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Figure 2. Comparison of low energy band structure, along the path K → Γ → M → K’ in the mBZ, of the non-interacting case in red, HF in blue and
HF+MAFM (a, b, c), HF+NAFM (d, e, f), HF+HAFM (g, h, i) in orange, for 𝜃 = 1.54° (a, d, g) 𝜃 = 1.25° (b, e, f) and 𝜃 = 1.05° (c, f, i). Dashed lines
correspond to valley flip.

Finally, the HAFM instability is similar to NAFM, but the mag-
netic order parameter peaks on the AB/BA regions instead of
the AA regions. The self-consistent HAFM magnetic structure is
shown in Figure 1h and i). The sign of 𝜁 changes between the AB
and BA regions of the moiré unit cell. As the peaks of 𝜁 occur on
the AB/BA regions, which form a hexagonal lattice on the moiré
scale, this ordering is referred to as hexagonal anti-ferromagnetic
order. This magnetic order is shown in Figure 1h,i, and can be
described by the analytical form

𝜁H(r) ≈
𝜁s

6

6∑
i=1

sin(Gi ⋅ r) (3)

This instability never appears as a leading instability, but its
critical Hubbard interaction was found to be ≈ 5.4 eV, which
is only slightly higher than the leading MAFM instability. We
again found that constrained calculations were required to ob-
tain mean-field values of its order parameter, as explained in Sec-
tion Atomistic Calculations. In Figure 1g, we show the mean-field
quasi-particle band structure for U = 5.94 eV (this was the small-
est U which could stabilize the order with constrained calcula-
tions), where the different valleys have been colored solid black
and dotted grey. We find that this magnetic order does not cre-
ate a gap at the K/K′ point, despite exhibiting a sublattice oscil-
lation. This is because it does not break C2 on the moiré scale.
It does cause the valleys to split at the K/K′ points, however, re-
sulting in one valley being pushed higher in energy and the other
to lower energies. This is similar to the effect of a perpendicular
electric field.

In summary, the atomistic calculations give detailed insights
into the magnetic order induced by Hubbard interactions in TBG.
However, it is not possible to carry out such calculations close to
the magic angle and we had to use values of U that are signifi-
cantly larger than the physical value of ≈4.5 eV[77,85,86]). To over-
come the limitations of the atomistic approach, we now aim to
incorporate the effects of atomic Hubbard interactions into the
continuum model of TBG.

2.2. Long-Range Interactions in the Continuum Model

In Figure 2, we show the Hartree-Fock quasi-particle band struc-
ture (solid blue line, for all subplots) for a number of twist an-
gles at charge neutrality, in addition to the non-interacting band
structure (solid red line, for all subplots). At 1.54°, Figures 2a,d,g,
we find that the Hartree-Fock potential slightly modifies the non-
interacting band structure, indicating that this twist angle is too
large for the formation of an insulating state. At a twist angle of
1.25°, Figures 2b,e,h, the non-interacting bands are flat enough
for the onset of a small gap due to the Hartree-Fock potential,
significantly smaller than the bandwidth, at the Dirac cones K
and K′ points in the moiré Brillouin zone. Right at the magic
angle of 1.05°, Figures 2c,f,i, the Hartree-Fock interactions in-
duce a large gap at the K and K′ points, on a similar scale to the
bandwidth. At charge neutrality these insulating states are char-
acterized by a broken sublattice symmetry and a preserved spin
and valley symmetry with respect to the non-interacting picture.
This implies that the mean-field ground state associated with the

Adv. Physics Res. 2023, 2, 2300048 2300048 (4 of 12) © 2023 The Authors. Advanced Physics Research published by Wiley-VCH GmbH
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Table 1. Parameters |𝛿1| and |𝛿2| extracted form the atomistic Hubbard
calculations for the different orderings considered in this work. All values
are expressed in meV.

Order |𝛿1| |𝛿2|

MAFM (U = 5.4 eV) 12.47 12.54

NAFM (U = 5.94 eV) 0 237.09

HAFM (U = 5.94 eV) 0 211.89

Hartree-Fock band structure is a linear combination of four states
with different spin and valley indices. These calculations are in
good agreement with a large body of literature, which investigates
these long-ranged interactions.[7,8,42]

2.3. Short-Range Interactions in the Continuum Model

Given the form of the anti-ferromagnetic orders discussed in Sec-
tion 2.1, we include them within the continuum model by means
of an scalar potential expanded in the first star of the BZ, as dis-
cussed in the Experimental Section. For the MAFM instability
both 𝛿1 and 𝛿2 are real valued. In the case of NAFM, since the
sublattice spin polarization averages to zero 𝛿1 = 0, and 𝛿2 is a
real number. Similarly for the HAFM instability 𝛿1 = 0, but 𝛿2 is
a purely imaginary number so the modulation is a sine function.
Both MAFM and NAFM orderings are degenerate in the valley
index but the HAFM is not and the modulated contribution to
the potential must be complex conjugated when exchanging val-
leys. The value of the parameters 𝛿1 and 𝛿2 are obtained numer-
ically within the self-consistent atomistic Hubbard calculation at
a twist angle of 1.54° and at charge neutrality, as described in Sec-
tion 2.1. Their values for the different magnetic orders are sum-
marized in Table 1. In the Appendix, we show the band structures
in the continuum model (without the Hartree-Fock contribution)
at 1.54° when the magnetic potential is included and find good
agreement with the atomistic calculations.

Next, we combine the Hubbard potential with the long-ranged
Hartree-Fock potential to study the band structure of TBG near
the magic angle. The values of 𝛿1 and 𝛿2 at smaller twist angles
can be obtained from |𝛿1∕2(𝜃)| = |𝛿1∕2(1.54◦ )|( 𝜃

1.54◦
)2.[41] However,

as discussed above, the atomistic Hubbard calculations were car-
ried out for U values that are larger than the physical U. As a re-
sult, the band gap obtained near the magic angle are much larger
than experimental findings, see Figure A2. To obtain physically
reasonable results, we reduce 𝛿1 and 𝛿2 by an additional scaling
factor, see discussion in the Appendix.

In Figure 2 we show band structures with a scaling factor
of 1/3. Results for other scaling factors are shown in the Ap-
pendix. Note that electron densities obtained from Hartree-Fock
theory can also exhibit sublattice polarization. When this hap-
pens, the sublattice-polarized magnetic potential can be added
in two inequivalent ways. In our calculations, we always choose
relative the sign such that the sublattice polarization matches in
the Hartree-Fock result and the Hubbard result, as this should
increases any bandgaps and reduces the total energy.

First, we discuss the Hartree-Fock result with the MAFM or-
der, as shown in Figures 2a–c. At a twist angle of 1.54°, Figure 2a,
we find that the magnetic order induces a small gap at the K/K′

points, which is absent in the pure Hartee-Fock result. For a
smaller twist angle of 1.25°, Figure 2b, a similar situation is
found: the magnetic order opens a gap at the K/K′ points while
the Hartree-Fock potential is responsible for minor changes in
the band structure compared to the non-interacting result. At the
magic angle of 1.05°, Figure 2c, the situation changes dramati-
cally: now the magnetic potential only slightly modifies the gap at
the K/K′ points, while the Hartree-Fock contribution dominates
the deformations to the electronic structure.

Next, we move on to describing the results for NAFM order-
ing, as seen in Figure 2d–f. At the largest twist angle of 1.54°,
Figure 2d, this magnetic order creates a significant gap at the
K/K′ points. This large magnitude of the gap could be an arti-
fact of the non-self-consistent nature of the calculations or re-
sult from an overestimate of the parameters that determine the
magnetic potential. These large band deformations persist at the
smaller twist angles of 1.25°, Figure 2e, and 1.05°, Figure 2f. Even
if smaller values of the parameters are utilized (by using a scaling
factor that is smaller than 1/3), this NAFM order induces large
band deformations, lowering the energy of the occupied valence
band. Therefore, it appears that this magnetic order can compete
with the Hartree-Fock contribution even at the magic angle.

Finally, we describe the effect of HAFM. As can be seen in
Figures 2g–i, the HAFM order does not create a gap at the K/K′

points. Instead it causes the Dirac cones at K and K′ to shift
up and down, respectively, for the single spin and valley chan-
nel. At 1.54°, Figure 2g, this effect is almost imperceptible but
stronger than the one induced by the Hartree-Fock interactions.
For the smaller twist angle of 1.25°, Figure 2h the situation is
similar but the energy gap between K and K′ increases. While
at the magic angle, Figure 2i, it slightly contributes to reshaping
the band structure, which in contrast is heavily affected by the
Hartree-Fock contribution, so we can safely say that the HAFM
is a secondary effect in this case.

3. Discussion

Overall, it appears that the MAFM, NAFM, and HAFM magnetic
potentials are more significant away from the magic angle, but
at angles close enough that there could still be broken symme-
try phases.[26,66] For example, 1.25° seems to be the most signif-
icantly affected by these Hubbard potentials relative to the ex-
change contribution. At the magic angle, the exchange contribu-
tion dominates, and at large twist angles the effects are small rel-
ative to the bandwidth, suggesting that the MAFM, NAFM, and
HAFM magnetic orders are not significant at these twist angles.
This twist angle dependence could suggest why the predictions of
Klebl et al.,[66] in terms of the twist angle and doping dependence
of magnetic states, agreed well with subsequent experiments.[26]

This could be because these Hubbard interactions are important
close to the onset of broken symmetry phases, but close to the
magic angle these Hubbard interactions are dominated by long-
ranged Hartree-Fock interactions.[41]

The NAFM order appears to affect the electronic structure
most significantly, both at the magic angle and away from it, caus-
ing the occupied eigenvalues of the valence band to decrease, and
therefore, it is a possible candidate for magnetic order in TBG. In
contrast, the MAFM order affects the electronic structure more
weakly. Finally, the HAFM appears to only affect the electronic

Adv. Physics Res. 2023, 2, 2300048 2300048 (5 of 12) © 2023 The Authors. Advanced Physics Research published by Wiley-VCH GmbH
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structure slightly. This magnetic order should, however, couple
to perpendicular electric fields,[77,83] which could make this or-
dering tendency more important. These perturbative calculations
are interesting because they are a very natural explanation for the
correlated insulating states in TBG.[4] From the Hartree-Fock cal-
culations, a spin-valley degenerate insulating state is obtained.
The atomistic Hubbard interaction, however, should break this
symmetry and cause the onset of magnetic order.

We have focused on TBG here, but many more moiré ma-
terials comprised of graphene exist.[87,88] Perhaps the most
promising ones are where there is a ±𝜃 twist between each
adjacent graphene layer.[84,89–95] These moiré graphene multi-
layers have been shown to host highly tunable superconduct-
ing phases,[96–100] and as the number of layers increases, the
superconducting phase occurs over wider and wider doping
ranges.[101,102] Fischer et al.[93] has shown similar types of mag-
netic order occur in these systems, which means it will be pos-
sible to use the developed method. Another example of moiré
structures is graphene twisted on a graphene multilayer, such
as twisted mono-bilayer graphene.[103,104] The magnetic structure
of these systems was shown to be more complex by Goodwin
et al.,[105] which suggests the approach described here could be
difficult to utilize. Finally, another class of moiré graphene multi-
layers is twisted bilayers composed of graphene multilayers, such
as twisted double bilayer graphene.[106–111] Further investigation
of this system would be of interest.

Apart from moiré graphene multilayers, moiré-less graphene
heterostructures have recently shown superconductivity and
strongly correlated phases[112–114] and therefore have drawn
great attention.[115] Due to the small Fermi surfaces, theoreti-
cal models often only treat the long-ranged part of the Coulomb
repulsion.[116–120] Our work demonstrates that in principle both
long- and short-ranged interactions can have a significant effect
on spin and valley order and therefore encourages further re-
search in this direction for non-moiré graphene heterostructures.

Moreover, one main assumptions of the presented calculations
is that the magnetic instability is q = 0 with collinear spins. While
these are simple approximations, which permitted us to develop
a method for translating the instabilities from atomistic mod-
els to continuum models, the MAFM, NAFM, and HAFM mag-
netic instabilities are not necessarily the ground state, as shown
in Ref. [71], for example. Therefore, a future direction of research
would be to further develop the method to include q ≠ 0 and non-
collinear spins.

4. Conclusion

In summary, starting from atomistic methods, we studied several
leading magnetic instabilities of charge neutral TBG at a large
twist. From these numerical calculations, we extracted analytical
expressions for the potentials of different magnetic orderings,
which allowed us to effectively include them within the contin-
uum model. The Hubbard calculations have been performed self-
consistently using atomistic methods, while the Hartree-Fock ap-
proximation has been computed self-consistently using the con-
tinuum model. When, we introduce the magnetic orderings as
effective potentials in the continuum model, we do not seek fur-
ther self-consistency, instead we add them as a perturbation to
the Hartree-Fock Hamiltonian, allowing a comparison of long-

and short-range exchange interactions. From these calculations,
we draw the following conclusions:

1. Atomistic Hubbard interactions break the spin-valley degen-
eracy of the insulating state at charge neutrality of TBG ob-
tained from self-consistent Hubbard calculations. Therefore,
these calculations suggest a Mott-like insulating state.

2. The effect of the magnetic orders is most significant for in-
termediate twist angles between the magic-angle and angles
where non-interacting physics is sufficient. At the magic an-
gle, the Hartree-Fock contribution dominates, and at large an-
gles the bandwidth dominates.

3. Out of the studied magnetic orders, nodal anti-ferromagnetic
order appears to be the most significant for changes to the
electronic structure, both at and away from the magic angle.

It is hoped that these results will further motivate the inclu-
sion of atomistic effects in the continuum model. Moreover, per-
forming self-consistent magnetic calculations should also be pos-
sible, and investigating such ordering tendencies in other moiré
graphene multilayers is now possible.

5. Experimental Section
Atomistic Calculations: This study commensurate moiré unit cells of

TBG,[36] starting from AA stacked bilayers and rotating the top layer anti-
clockwise about an axis perpendicular to the graphene sheets that passes
through a carbon atom in each layer. The moiré lattice vectors of the com-
mensurate structures were R1 = na1 + ma2 and R2 = −ma1 + (n + m)a2,
where n and m are integers that define the commensurate TBG structure,

and a1 = (
√

3∕2,−1∕2)a0 and a2 = (
√

3∕2, 1∕2)a0 are the lattice vectors
of graphene, where a0 = 2.46 Å is the lattice constant of graphene.

At small twist angles, TBG undergoes significant atomic
relaxations.[34,35,121–125] It calculate these relaxations using a classical
force field implemented in the LAMMPS software package.[126] The inter-
layer interactions were modeled using the AIREBO-Morse potential,[127]

while intralyer interactions are described with the Kolmogorov-Crespi
(KC) potential.[128]

To investigate the electronic structure of TBG, the Hamiltonian was
used

̂ =
∑
i𝜎

𝜀i𝜎 ĉ†i𝜎 ĉi𝜎 +
∑
ij𝜎

[t(ri − rj)ĉ
†
j𝜎 ĉi𝜎 + H.c.] (4)

where 𝜖i𝜎 and ĉ†i𝜎 (ĉi𝜎) denote the on-site energy of atom i with spin 𝜎 and
the electron creation (annihilation) operator associated with atom i and
spin 𝜎, respectively. The hopping parameters between atoms i and j, t(ri −
rj), were calculated using the Slater-Koster (SK) rules[129]

t(r) = Vpp𝜎(r)
(

r ⋅ ez|r|
)2

+ Vpp𝜋(r)
(

1 −
r ⋅ ez|r|

)2

(5)

where Vpp𝜎(r) = V0
pp𝜎 exp{q𝜎(1 − |r|∕dAB)}Θ(Rc − |r|) and Vpp𝜋(r) =

V0
pp𝜋 exp{q𝜋(1 − |r|∕a)}Θ(Rc − |r|). It take the pre-factor for the pp𝜎-

hopping and pp𝜋-hopping to be V0
pp𝜎 = 0.48 eV and V0

pp𝜋 = −2.7 eV,

respectively. The carbon–carbon bond length is given by a = a0∕
√

3
and the interlayer separation was taken to be dAB = 3.35 Å. It take
the decay parameters of the SK rules to be q𝜎 = dAB/0.184a0 and

q𝜋 = 1∕0.184
√

3.[36,37] Hoppings between carbon atoms separated by
more than Rc = 10 Å were neglected.[130]

Adv. Physics Res. 2023, 2, 2300048 2300048 (6 of 12) © 2023 The Authors. Advanced Physics Research published by Wiley-VCH GmbH
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These atomistic methods, using the KC potential and SK rules,[36,37]

had been commonly employed within the community to study
TBG.[125,130,131] However, it was known that the KC potential had
some shortcomings, with an example of a more accurate potential being
developed by Wen et al.[132] Moreover, the SK rules for the tight-binding
parameters were simple, but were known to disagree with those obtained
from wannierization of the electronic structure of graphene, with Pathak
et al.[133] developing a more accurate tight-binding model for TBG. While
the atomistic methods here, also commonly employed by others, were
not the most accurate for graphene-based moiré systems, it had been
shown that these simplified methods could accurately reproduce the
DFT electronic structure with only small changes to the tight-binding
parameters.[35,134] The main difference for the presented study and those
of more accurate models was the exact twist angle of the magic angle,
and therefore, the results presented were not very sensitive to the exact
atomistic model used.

To include the effects of short-range Hubbard interactions, the on-site
energy is determined by the mean-field Hubbard interaction[77]

𝜀i𝜎 = Uni𝜎′ , (6)

where U is the Hubbard parameter of the carbon pz orbital, and ni𝜎′ is the
mean-field electron density on atom i with the spin 𝜎′ being the opposite
to 𝜎.[77] Note that in the mean-field Hubbard calculations it only consider
collinear spin configurations.

The electron density could be determined from the Bloch eigenstates
𝜓nk𝜎(r) (with subscripts n and k denoting a band index and the crystal
momentum, respectively) according to

n𝜎(r) =
∑
nk

fnk𝜎 |𝜓nk𝜎(r)|2
=
∑

j

nj𝜎𝜒j(r)
(7)

where fnk𝜎 = Θ(𝜖F − 𝜖nk𝜎) is the occupancy of state 𝜓nk𝜎 with eigenvalue
𝜖nk𝜎 (where 𝜖F is the Fermi energy), 𝜒j(r) =

∑
R 𝜙

2
z (r − tj − R) (with R de-

noting the moiré lattice vectors, ϕz(r) being the carbon pz orbital and tj
denoting the position vector of atom j relative to the origin of the moiré
unit cell) and nj𝜎 is the total number of electrons in the j-th orbital with
spin 𝜎.[69] To characterize the magnetic ordering, it calculates the spin po-
larization

𝜁j =
nj↑ − nj↓

nj↑ + nj↓
(8)

To obtain a solution of the atomistic Hubbard model, it must perform
self-consistent calculations in order to converge the electron density. To
prepare the mean-field calculations in a magnetic state, it required an ini-
tial guess for the electron densities nj𝜎 . For this, it performed RPA spin-
susceptibility calculations, following the methods outlined in Refs. [65,
66]. The eigenvalues of these calculations provide the critical interaction
strength of a magnetic instability (Uc) and the eigenvectors describe the
spatial profile of the magnetic order. By using these eigenvectors as an ini-
tial on-site interaction, as shown in Ref. [65], we induce a spin polarization
of the same form. The resulting electron density of which could then be
used to perform self-consistent calculations.

To obtain a self-consistent solution, it used a simple mixing scheme
with a mixing parameter of 0.1 typically (0.1 of the new electron spin den-
sity was mixed into the spin density of the previous step). When determin-
ing the Fermi energy, the total electron number was again forced to be N,
as it only study charge neutrality here, but this did not restrict the spin
densities to be the same. It mixed the up and down spin density by the
same amount, instead of choosing to work with the total electron density
and magnetic order parameter, as it found it is sometimes more stable.

Using this approach, it was only possible to stabilize the leading insta-
bility obtained from the RPA calculations.[83] To study the other magnetic
orderings, it also perform constrained calculations. In these calculations,

it first determine an analytical form for the spatial profile of the magnetic
order in terms of a few parameters and then optimize the value of these
parameters, see Section 2.1.

Continuum Model Calculations: The mini-Brillouin Zone (mBZ) of the
continuum model was spanned by the two reciprocal lattice vectors G1 =
2𝜋
Lm

( 1√
3

, 1) and G2 = 4𝜋
Lm

(− 1√
3

, 0), where Lm = a0
2 sin (𝜃∕2)

is the moiré pe-

riod and a0 is the lattice constant of graphene. These vectors form the ba-
sis to define any reciprocal lattice vector, Gi = nG1 + mG2 with n, m ∈ ℤ,
i ∈ ℕ. The first star of reciprocal lattice vectors, i.e., the six first Gi, are
defined by n, m ∈ [ − 1, 1].

The non-interacting continuum model was four-fold degenerate, since
it accounts for valley and spin quantum numbers, with the Hamiltonian at
crystal momentum k being written as

̂TBG,𝜉(k) =

(
Ĥ1,𝜉(k) T̂

T̂† Ĥ2,𝜉(k)

)
(9)

where Ĥl,𝜉 is the continuum single layer graphene Hamiltonian of valley 𝜉
and layer l, given by

Ĥl,𝜉(k) = 𝜉ℏvF(k − 𝜉Kl)𝜏𝜃,l (10)

with vF = (
√

3V0
pp𝜋a)∕(2ℏ) denoting the Fermi velocity, Kl is the position

of the Dirac point of layer l, 𝜏𝜃,l = ei𝜉𝜏z𝜃∕2(𝜏x , 𝜉𝜏y)e−i𝜉𝜏z𝜃∕2, with 𝜏 i being the

Pauli matrices acting on the sublattice degree of freedom. The matrix T̂ is
a periodic function in the moiré unit cell that hybridises layers. For small
twist angles, the main contribution comes from the first three reciprocal
lattice vectors, G = (0, 0), G = G1 and G = G1 + G2

[38]

T̂ =
∑
G

T̂(G) =

(
u1 u2

u2 u1

)
+

(
u1 u2e−2i𝜃𝜋∕3

u2e2i𝜃𝜋∕3 u1

)

+

(
u1 u2e2i𝜃𝜋∕3

u2e−2i𝜃𝜋∕3 u1

) (11)

where u1 = 0.0797 eV and u2 = 0.0975 eV[135] are, respectively, the hopping
amplitudes between AB/BA and AA stacking, which incorporate the atomic
relaxation in the continuum model.[124,135,136]

To account for electron–electron interactions, it include the mean-field
Hartree-Fock terms to the Hamiltonian, assuming a collinear configura-
tion of spins in which they were aligned either in a parallel or in a antipar-
allel manner along a specific direction. The Hartree contribution to the
Hamiltonian is given by

̂H =
∑
i,𝜉,𝜎

∫Ω d2r�̂� i,†
𝜉,𝜎(r)�̂� i

𝜉,𝜎(r)VH(r) (12)

where i ∈ [1, 4] labels the combined sublattice and layer degree of free-
dom, 𝜎 accounts for the spin, Ω is the area of the TBG sheet, and the local
Hartree potential is given by

VH(r) = ∫Ω d2r′vC
(
r − r′

)⟨
𝛿�̂�

(
r′
)⟩

(13)

here 𝛿�̂�(r) ≡ �̂�(r) − 𝜌CN(r) denotes the fluctuation in charge density, with
�̂�(r) =

∑
𝜉,𝜎 �̂�

†
𝜉,𝜎(r)�̂�𝜉,𝜎(r) corresponding to the charge density and 𝜌CN(r)

is the average density of non-interacting TBG at charge neutrality. It as-
sumed that the Coulomb interaction was screened by a double-metallic
gate[51]

vC(q) = 2𝜋e2

𝜖

tanh (d|q|)|q| (14)

Adv. Physics Res. 2023, 2, 2300048 2300048 (7 of 12) © 2023 The Authors. Advanced Physics Research published by Wiley-VCH GmbH
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Figure A1. Low energy band structure for 𝜃 = 1.54°, along the path K → Γ → M → K’ in the mBZ. a) With MAFM potential in the Tight-Binding
approximation, b) with MAFM potential in the continuum approximation and scaling factor f = 1 (red), f = 1/2 (blue) and f = 1/3 (green). c) With NAFM
potential in the Tight-Binding approximation, d) with NAFM potential in the continuum approximation and similar color-scheme than in (b). e) With
HAFM potential in the Tight-Binding approximation, f) with HAFM potential in the continuum approximation and similar color-scheme than in (b).
Dashed lines correspond to valley flip.

where d = 40 nm is the distance to the metallic gates and 𝜖 = 10 is the
background dielectric constant.[42,60,69]

The Fock contribution to the Hamiltonian is given by

̂F =
∑

i,j,𝜉,𝜎
∫Ω d2rd2r′�̂� i,†

𝜉,𝜎(r)Vij
F

(
r, r′

)
�̂�

j
𝜉,𝜎

(
r′
)

(15)

where i, j run over the sublattice and layer indexes. The non-local Fock
potential is given by

Vij
F = −

⟨
�̂�

j,†
𝜉,𝜎

(
r′
)
�̂� i
𝜉,𝜎(r)

⟩
vC
(
r − r′

)
(16)

As it want to express the matrix elements of ̂F , defined in Equation (15),
in reciprocal space it must transform the non-local Fock potential into
Fourier space. By this procedure the field operators reduce to,

�̂� i
𝜉,𝜎(r) = 1√

Ω

∑
k,G

𝜙i
𝜉,𝜎(k + G)ei(k+G)⋅r (17)

and the Fock matrix elements can be computed as

⟨k + G, 𝜉, 𝜎, i|̂F|k′ + G′, 𝜉′, 𝜎′, i′⟩ =
− 1

Ω
∑

i,j,𝜉,𝜎

∑
k′′ ,G′′

𝜙i
𝜉,𝜎

(
k + G′ + G′′)𝜙j,∗

𝜉,𝜎

(
k′ + G + G′′)

× vC
(
k − k′′ + G′′)

(18)

where the sum was over the occupied states at a given Fermi energy and
ϕ are the wavefunctions. For the Hartree-Fock calculations it work with a
continuum model of TBG expanded up to the third star. It used a density
of k-points between 2 − 6 × 105 Å2 in the mBZ, depending on the twisting
angle, which provides converged results. The convergence of the Hartree-
Fock potential was normally reached after 5 − 6 self-consistency steps.

The additional potential associated with the different magnetic order-
ings was included in the continuum model via a scalar sublattice and spin
dependent potential expressed through its harmonic decomposition in the
first star reciprocal lattice vectors according to

̂𝛼
𝜉

(Gi, Gj) =
6∑

i,j=0

U𝛼
𝜉
(Gi − Gj) (19)

where 𝛼 labels the different magnetic orderings. As discussed in the Re-
sults Section, this were able to express the potential from Hubbard interac-
tions in the atomistic model through a Fourier series with only a constant
and the first star of moiré G vectors. A general expression for the potential
in real space induced by these anti-ferromagnetic instabilities would be

U𝛼
𝜉
(r) =𝛿1𝜏z

+ 1
6

6∑
i=1

𝛿2𝜏z

{
eiGi⋅r, if 𝛼 = MAFM, NAFM
e𝜉iGi⋅r, if 𝛼 = HAFM.

(20)

where 𝛿1 corresponds to the average value of the sublattice polarization
strength, 𝛿2 is the moiré modulated part of the potential, i.e., the weight
associated to the expansion of the potential in the i-th BZ reciprocal lattice
vector, and 𝜏z is the Pauli matrix corresponding to the sublattice degree

Adv. Physics Res. 2023, 2, 2300048 2300048 (8 of 12) © 2023 The Authors. Advanced Physics Research published by Wiley-VCH GmbH

 27511200, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/apxr.202300048 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [02/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.advphysicsres.com

Figure A2. Low energy band structure along the path K → Γ → M → K’ in the mBZ. a,b,c) with HF (black) and with MAFM+HF potentials in the
continuum approximation and scaling factor f = 1 (red), f = 1/2 (blue) and f = 1/3 (green). d,e,f) with HF (black) and with NAFM+HF potentials in the
continuum approximation and scaling factor f = 1 (red), f = 1/2 (blue) and f = 1/3 (green). g,h,i) with HF (black) and with HAFM+HF potentials in the
continuum approximation and scaling factor f = 1 (red), f = 1/2 (blue) and f = 1/3 (green). Dashed lines correspond to valley flip.

of freedom. The values for 𝛿1/2 could be extracted from the atomistic cal-
culations from the constant and first moiré G vector variations in Un𝜎 ,
which were the main contributions. This real space potential was Fourier
transformed and included in the Hamiltonian according to Equation (19).

The final Hamiltonian that combines both the effective magnetic po-
tential derived from atomistic calculations and the Hartree-Fock potential
is given by

̂𝜉(k) = ̂TBG,𝜉(k) + ̂H(k) + ̂F(k) + ̂𝛼
𝜉

(21)

It performed the calculation at half-filling and hence Hartree term was
not included explicitly. Note that this final Hamiltonian was not treated
in a self-consistent way since the effective magnetic Hamiltonian was just
added to the self-consistent Hartree-Fock Hamiltonian, which would be
equivalent to a first-order approximation of the magnetic orderings in per-

turbation theory. The band structures were obtained from diagonalizing
this Hamiltonian.

Appendix: Scaling Factor

Following the explanation in Section 2.1 the RPA spin-susceptibility calcu-
lations of TBG at 1.54° show that the MAFM order is the leading instability
in the system and requires a critical Hubbard interaction Uc ≈ 5.1 eV to
emerge. While the NAFM and HAFM orders necessitate a slightly higher
interaction strength Uc ≈ 5.4 eV. Initially, we performed atomistic Hubbard
calculations with values of U larger than these critical values to readily sta-
bilise the MAFM, NAFM, and HAFM magnetic orders. The converged self-
consistent values of the electron density, and the value of U, was then used

Adv. Physics Res. 2023, 2, 2300048 2300048 (9 of 12) © 2023 The Authors. Advanced Physics Research published by Wiley-VCH GmbH
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to estimate the Hubbard potentials parameters of the continuum model
at angles closer to the magic angle.

Given that the values of U used to converge the atomistic Hubbard
calculations were larger than the physical value, U ≈ 4.5 eV,[77,85,86] we
must include into the continuum model a scaling factor f to obtain more
physical results. Just based on the different values of U, from the physical
value[77,85,86] to those used to converge the atomistic calculations, one
would at least need f = 4.5/5.4 ≈ 0.83. The larger value of U also causes
the spin density to be polarized more than it would be for the physical
value, making the scaling factor depend non-trivially on the value of U.
Therefore, as we do not know the exact scaling factor, we demonstrate
that the results presented here are robust with respect to different values
of the scaling factor.

In Figure A1 we show the band structure of TBG at 𝜃 = 1.54° with the
magnetic potentials treated within the atomistic approach in the top row,
and in the bottom row, we show the corresponding band structure within
the continuum model (without the exchange potential contribution) for a
scaling factor of f = 1 (red), f = 1

2
(blue),f = 1

3
(green). For the scaling

factors considered it is clear that the band structures are qualitatively sim-
ilar in the MAFM and HAFM cases; while in the NAFM case there appears
to be significant differences, but this is because the gap at the K/K′ point
is larger than the bandwidth at this angle.

We perform a sanity check and show that once we include the exchange
potential the differences vanish and the scaling factor does not play any
role to derive the conclusions of the work. In Figure A2a,d,g, we plot the
band structure of TBG for 𝜃 = 1.54° with the magnetic and exchange po-
tentials. In Figure A2b,e,h we plot again the band structure for 𝜃 = 1.25°

and in Figure A2c,f,i for 𝜃 = 1.05°. If we focus first on the 𝜃 = 1.54° and 𝜃
= 1.25° band structures in which the magnetic potentials dominates over
the exchange potential, we notice that the role of the scaling factors f =
1/2 and f = 1/3 is just to decrease the magnitude of the gap near the K/K’
points, leaving qualitatively the same band structure as for f = 1. While in
the case of the magic angle 𝜃 = 1.05° in which the exchange potential dom-
inates, we note that in general for all the magnetic potentials taken into ac-
count the scaling factor is responsible of controlling the overall bandwidth
since the gap is due to the exchange potential. In this sense, we note that
the interplay between magnetic and exchange potentials is not affected by
choosing any of the scaling factors considered in the work and so the con-
clusions derived from this interplay. We then choose the scaling factor to
be f = 1/3 so the bandwidth is more reliable to the ones experimentally
reported near the magic-angle.
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